Simple Transistor

Eine sehr, sehr einfache Einführung in digitale Technologie

Die Digitaltechnik beruht auf der Annahme, daß ein Wert nur zwei Zustände kennt.

  • true/false
  • 0/1
  • on/off
  • etc

Der gute alte Herr Leibniz hat seinerzeit erkannt, daß man mit zwei Zeichen
sehr wohl jede uns vertrautere Dezimalzahl darstellen kann.

Er hat einfach die zwei grafischen Zeichen des I Ging, durchgehende und
unterbrochene Striche in 0 und 1 uminterpretiert.

Deshalb zählt er für mich zu den Urvätern der Computertechnik.

Er hat dann auch entsprechende Umrechnungsalgorithmen beschrieben, um zwischen beliebigen Zahlensystemen hin- und herzurechnen.

Ist aber nicht das Thema.

Sehr wohl muß aber der Herr Ohm herangezogen werden.

Seine Erkenntnis über den Zusammenhang zwischen Spannung, Strom und Widerstand ist die Basis aller elektrischen Zusammenhänge.

$$U = I \times R$$

In Worten:

die Spannung steigt (nicht ins unermäßliche,aber) bei gleichem Strom,
wenn der Widerstand größer wird.
Der Strom sinkt bei gleicher Spannung, wenn der Widerstand größer wird.

Oder ganz einfach:

Durch einen Widerstand fließt ein Strom, wenn eine Spannung angelegt wird.

Aus einer Wandsteckdose kommt nur dann Strom wenn ein Widerstand eingesteckt wird.

Der wird meistens „Verbraucher“ genannt.

Hier sollte jedoch der Mensch nicht als Verbraucher benutzt werden. 😱

Um nicht jedesmal den Stecker reinstecken und rausziehen zu müssen,
gibt es mechanische Schalter mit zwei Widerstandszuständen:

  • geschlossen, Widerstand sehr klein (mOhm)
  • offen, Widerstand sehr groß (MOhm, elektrischer Widerstand der Luft)

In unseren Schaltungen gehen wir meistens davon aus, daß bei einem offenen
Schalter kein Strom fließt.

Das ist aber nicht immer so!

Gewitterblitze können soviel Spannung aufbauen, um diesen offenen Spalt zu überspringen!

Deshalb bei Gewitter Stecker herausziehen.

Computer benutzen im allgemeinen Spannungen und Ströme im für Menschen ungefährlichen Bereich.


Welche Bauteile kennen zwei Zustände

  1. Manueller Schalter
    offen: es fließt kein Strom,
    geschlossen: es kann Strom fließen.
  2. Magnet Relais:
    Ein Strom durch eine Spule erzeugt ein Magnetfeld, welches eine Schalter schließt.
  3. Elektronische Vakuumröhre:
    Eine Spannung an einem Gitter zwischen Kathode und Anode verhindert den Elektronenfluß oder nicht.
  4. Bipolare Transistoren:
    Ein Stromfluß in die Basis verringert den Widerstand zwischen Kollektor
    und Emitter, läßt also Strom fließen.
  5. MOSFETs , heute üblich:
    Eine Spannung am „Gate“ verringert den Widerstand zwischen „Source“
    und „Drain“, es fließt ein Strom.

Die heutigen MOSFETs verhalten sich also wie Röhren, sind aber ein wenig kleiner.
Röhren haben einen Durchmesser von zwei bis fünf Zentimetern und sind
sechs bis zehn Zentimetre hoch.

MOSFETs sind Halbleiter mit Strukturgrößen im Bereich \(10^{-9}\) Meter (nm).

Deswegen paßt der Röhrenrechener aus dem Deutschen Museum zig-mal in ein Mobiltelefon.

Soviel zur Vorrede.


Eine sehr sehr einfache Beschreibung bipolarer Transistoren

Das Bild zeigt Grundschaltungen mit den zwei Standardvarianten der bipolaren Transistoren.

  • NPN
  • PNP

Beide haben die folgenden Anschlüsse:

  • B, die Basis
  • C, der Kollektor
  • E, der Emitter

Beim NPN-Transistor fließt nur dann ein Strom von V+ nach 0V/GND (der Fußpunkt mit dem Balken), wenn in die Basis ein Strom hineinfließt und das kann nur geschehen, wenn der Schalter nach V+ geschlossen wird.

Der Widerstand R1 begrenzt den Strom in die Basis und der Widerstand R2 sorgt für ein vollständiges Abschalten des Stroms wenn der Schalter offen ist.
R3 ist ein Verbraucher.

Schaltverhalten NPN

$$
\begin{array}
{c | c | c}
Schalter & Vin & Vout \\
\hline \\
offen & 0V & V+ \\
geschlossen & V+ & 0V \\
\end{array}
$$

Der NPN-Transistor invertiert die Spannung oder aus „true“ wird „false“.

Beim NPN-Transistor Fließt nur dann ein Strom aus der Basis heraus,
wenn der Schalter geschlossen ist.

Schaltverhalten PNP

$$
\begin{array}
{c | c | c}
Schalter & Vin & Vout \\
\hline \\
offen & V+ & 0V \\
geschlossen & 0V & V+ \\
\end{array}
$$

Auch der PNP-Transistor invertiert die Spannung oder aus „true“ wird „false“.

Der Unterschied ist im Ruhezustand des Ausgangs.

Beim NPN-Transistor mit inaktivem (offenen) Schalter ist der Ausgang V+.

Beim PNP-Transistor mit inaktivem (offenen) Schalter ist der Ausgang 0V.


Und nun das Ganze nochmal mit MOSFETs

MOSFETs sind Spannungs- nicht Stromgesteuert, es fließt kein Strom in oder aus dem „Gate“.

Das die elektronischen Bausteine trotzdem sehr viel Energie verbrauchen, also irgendwie Strom fließt, liegt an der verwendeten „Push-Pull“-Technik, die sehr kurzfristig beim umschalten Strom fließen läßt.

Daraus resultiert die Abhängigkeit der benutzten Energie von der Schaltfrequenz (GHz).

Dem versucht man entgegen zu treten, indem die Versorgungsspannung reduziert wird, von ursprünglichen +5V aus der TTL Zeit hin zu +3,3V Versorgung mit interner reduction auf 1,5V oder weniger.

Wobei wir hier dann wieder in der Analogwelt sind. 😇

Damit kann der Begrenzungswiderstand wegfallen.

Es werden also weniger Bauelemente benötigt.

Dies ist der Grund, daß schon die ersten µProzessoren in MOS-Technik
und nicht bipolar gebaut wurden.

Die Technology ist dann dem Moore’schen Gesetz gefolgt und hat die Anzahl
der MOSFETs pro Fläche ca. alle zwei Jahre verdoppelt.

Gordon Moore hat Intel mitbegründet und ist leider vor einiger Zeit gestorben.

Schaltverhalten NMOS

$$
\begin{array}
{c | c | c}
Schalter & Vin & Vout \\
\hline \\
offen & 0V & V+ \\
geschlossen & V+ & 0V \\
\end{array}
$$

Schaltverhalten PMOS

$$
\begin{array}
{c | c | c}
Schalter & Vin & Vout \\
\hline \\
offen & V+ & 0V \\
geschlossen & 0V & V+ \\
\end{array}
$$


Der große Vorteil ist, die Stufe, welche den Eingang ansteuert muß sehr
wenig Strom (nA) liefern.

Jetzt müssen wir mal den Herrn Watt bemühen, der der Leistungsbezeichnung
den Namen gegeben hat Watt W oder kW.

$$P = U \times R$$

Wenn also I gegen null geht ist die Leistung auch annähernd null egal
welche Spannung benutzt wird.

Ein wenig Mathematik:

Statt U setze ich aus Ohm I × R ein.

$$P = I \times R \times I = I² \times R$$

Für I null einsetzen:

$$P = 0 \times R = 0 $$


Im nächsten Kapitel dann etwas über digitale Schaltungen.

Das Ziel ist ein Verständnis zu bekommen wie eine CPU ein Programm abarbeitet.